

Planning Commission Application

Fort Gratiot Charter Township

For Office Use	Only
Project #:	Site Plan
Review Fee: \$1504 \$1000 eng	Special Use
Meeting Date: 4-8-2006	Special Use & Site Plan

APPLICATION FOR SITE PLAN AND SPECIAL APPROVAL USE REVIEW

Please complete in full the information below. Return this application with five (5) copies of the site plan and other pertinent data, as required and outlined in the Fort Gratiot "Procedures Guide for Site Plan Approval" or the "Procedures Guide for Special Land Use Approval," the applicable filing fee and the preliminary review fee. All information must be submitted thirty (30) days prior to the meeting.

and the premimary review ree. An information must be so	ionnitted thirty (30) days prior to the	meeting.	
Project Information:			
,	- 1	-	
Project Name: Smart Storage	Solutions		
Address/Location: 3/34 Keewahdin	Road, Fast Grat	iot, MI	48059
Parcel Number(s): 74-20-016-3015-000		Zoning District:	C-Z
Surrounding Zoning Districts: N: AG S: C-2	E: RM W: C-Z	Master Plan Designation:	-
Proposed Use: <u>Self Storage</u>			
			~
Contact Information:		1	-
Property Owner(s) Name - Check here if this is the main contact for this project	Applicant(s) Name (if differe	ent from owner) - Check here if	this is the main contact for this project
Dion Schlager			
Dien Schlager Street Address	Street Address		
3001 N. River Road			
City/State/Zip	City/State/Zip		
Fort Gratiot			
Fort Gratiot Phone Email	Phone	Email	
810-300-1222 dienschlogere	2 amail.com		
Alternate/Additional Contact Name and Email	Alternate/Additional Contact	t Name and Email	-
□ Architect or Dengineer Contact Name – Check here if this is the main contact for the Lori M. Shink, PE Firm or Company Name		r Contact Name - Check here if	this is the main contact for this project 🔲
Firm or Company Name	Firm or Company Name		
Shink Engineering, PLC Street Address			
Street Address 4146 Pine Grove Road City/State/Zip	Street Address		
City/State/Zip	City/State/Zip		
Fort Gratiot, MI 48059 Phone Email			
	Phone	Email	
586-718-1965 Imshink @ yah			
Alternate/Additional Contact Name and Email	Alternate/Additional Contac	t Name and Email	
3			
The undersigned deposes that foregoing statement permission for authorized township representative described property/properties for the purposes of g	es, Planning Commissioners, an	d the Zoning Adn	
() Salionia	Dion Schloger		2-28-2025
Lard Owner Simplifies			
Legal Owner Signature	Applicant Signature		Date

FORT GRATIOT PLANNING COMMISSION SITE PLAN REPORT

Project Name:	Smart Storage Solutions			Parcel ID:	74-20-016-3015-000
File Number:	25-001	Meeting Date:	04/08/2025	Location:	3134 Keewahdin Road

1. PROJECT SUMMARY

East: C2/RM

PROPERTY OWNER: APPLICANT:

Dion Schlager, Smart Storage Solutions Lori M. Shink, PE, Shink Engineering, PLC 3001 North River Road, Fort Gratiot, MI 48059 4146 Pine Grove Road, Fort Gratiot, MI 48059

P: (586) 718-1965 E: lmshink@yahoo.com

The applicant is proposing to construct a self-storage unit facility on a parcel zoned C-2 General Business in two phases. Phase One contains six buildings: two-30'x190', two-30'x200'; one-40'x190' and one-40'x200'; a gated entry, landscaping and lighting. The property is zoned C-2 General Business and the proposed is a permitted use requiring site plan approval pursuant to Division 9, Section 38-352 (35.)

	SUBJECT	PARCEL DATA	1
Zoning:	C-2 General Business	Master Plan:	Uptown Business District
Lot Frontage:	220' – Keewahdin Road	Lot Size:	8.03 Acres – Irregular
Surrounding P	roperties Zoning and Land Use:		
North: AG	Dwelling and cell tower		
South: C2	Lawfully existing non-conforming resi	dential homes	, Port Huron Drywall

West: C2 Lawfully existing non-conforming residential homes, Certified Collision

Wetlands, Westmoore Apartments

FORT GRATIOT PLANNING COMMISSION SITE PLAN REPORT

Project Name:	Smart Storage	Smart Storage Solutions		Parcel ID:	74-20-016-3015-000
File Number:	25-001	Meeting Date:	04/08/2025	Location:	3134 Keewahdin Road

20NING MAP 30AG 30AG 3011-00 AG 3022-000

2. REGULATORY ORDINANCE

Sec. 38-352. - Permitted uses.

In all C-2 general business districts, no land, building, structure, or premises except as otherwise provided in this chapter, shall be erected, altered, or used except for one or more of the following uses. The parenthetical number (000000) listed by each use is taken from the North American Industry Classification System (NAICS), as published by the U.S. Office of management and budget and is intended to provide a general guide of uses intended under each heading. However, where it is determined by the planning commission that the effects of a NAICS listed use may tend to extend beyond the site, special land use approval shall be required.

(35) Self-storage facilities and mini-warehouses (531130) used to provide temporary storage needs for businesses, apartment dwellers and other individuals on a self-service basis shall be a permitted use and are subject to the following extra standards:

FORT GRATIOT PLANNING COMMISSION SITE PLAN REPORT

Project Name:	Smart Storage	Solutions		Parcel ID:	74-20-016-3015-000
File Number:	25-001	Meeting Date:	04/08/2025	Location:	3134 Keewahdin Road

A. NONE PROPOSED, MANDATORY ONGOING COMPLIANCE WILL BE REQUIRED.

- a. No storage of combustible or flammable liquids, combustible fibers, explosive materials, or toxic materials shall be permitted with the self-storage buildings or upon the premises.
- b. No outside storage shall be permitted.
- c. The use of the premises shall be limited to storage only and shall not be used for operating any other business, or for maintaining or repairing of any vehicles, recreational equipment or other items, or for any recreational activity hobby or purpose other than the storage of personal items and business items.

B. MET

- d. Appropriate screening as per the requirements of <u>section 38-614</u> shall be provided for those portions of the site abutting a residential zoning district.
- g. Buildings shall not exceed 200 feet in length and shall maintain a minimum distance of 25 feet between individual buildings.

C. MET – ADEQUATE DESIGN, WILL NEED FINAL ENGINEERING APPROVAL PRIOR TO PERMITTING

e. The site shall be graded, drained and developed with hard-surfaced pavement as per the specifications of section 38-73.

D. FIRE DEPARTMENT REVIEW PENDING – At the time of this review, comments have not yet been received.

f. Fire hydrants and fire suppression devices shall be provided, installed and maintained as per the requirements of the township fire chief.

3. **CONSIDERATIONS:**

The Planning Commission may impose such reasonable conditions of use as is determined necessary to protect the best interest of the township and the surrounding property. Any decision <u>MUST</u> be accompanied by findings of fact and reasons for any decision.

- Engineering does not recommend approval at this time. Report attached.
- The Fort Gratiot Assessing, Building and Public Works Departments have no concerns, reviews attached.
- Parking is not shown.
- Prior to any building permits being issued, proof of approval, permits issued by, proven compliance with, bonds issued to, all local, state, and federal agencies, including, but not limited to, final Fort Gratiot engineering review and approval, the St. Clair County (SCC) Health Department Soil Erosion and Sedimentation Control, the SCC Drain Office, the SCC Road Commission, and EGLE must be shown.

4. ACTIONS: Regardless of the action taken, the decision MUST be accompanied by reasons for such action.

- A. Postpone the decision until a specific date, or until additional information is presented; OR
- B. Approve the request as presented; **OR**
- C. Approve the request with specific conditions:
 - A preliminary site plan approval may be considered and would require the applicant to present an updated site plan to the Planning Commission for final approval; **OR**
 - Conditional site plan approval may be considered if the PC agrees that applicant has demonstrated the
 project generally meets the ordinance requirements; final compliance with all conditions verified
 administratively prior to building permits being issued; OR
- D. Deny the request.

CIVIL ENGINEERS · LAND SURVEYORS

PRINCIPALS

Philip J. Porte, P.E. Robert J. Arnold, Jr., P.S. Patrick R. Phelan, P.E. LEED AP Andrew M. Bollaert, P.S. Erik B. Schwanz

ASSOCIATES

Michael W. Quaine, P.E.

March 27, 2025

Ms. Jorja Baldwin Planning and Zoning Administrator Charter Township of Fort Gratiot 3720 Keewahdin Road Fort Gratiot, MI 48059-3309

RE: Smart Storage Solutions - Mini Storage Site Plan, 3134 Keewahdin Road, Fort Gratiot Township

(Plan Review No. 01)

BMJ Project Name: Keewahdin Rd. (3134) Mini-Storage Site Plan Review (JN: 2503.19)

Dear Ms. Baldwin:

We have completed our review of the site plan drawings submitted for the proposed Smart Storage Solutions mini storage site, which is located on the north side of Keewahdin Road between M-25 and Parker Road. The Site Plan was prepared by Shink Engineering, PLC under the direction of Lori M. Shink, P.E. The drawings are dated 2/28/2025. Our review comments are limited to engineering-related criteria as they pertain to site plan approval and are as follows:

A. General

- 1. The site is zoned C-2 General Business according to the Township Zoning Map dated November 29, 2006.
- 2. All minimum yard setbacks for the proposed development comply with Section 38-441 of the Township Zoning Ordinances.
- 3. Township Ordinance requires that topographic survey information be provided within 100 feet of the proposed work. This information is deficient at the north end and along the east side of the site. However, sufficient information has been provided to evaluate the plans for Phase 1 of the project.
- 4. There is an access easement shown in the northeast corner of the site. Easement dimensions/bearings, Liber and Page of the recorded easement should be added to Sheet 2 of the drawings.
- 5. The plans provided were not sealed. Plans required the seal and signature of a licensed professional engineer in the State of Michigan

B. Required Permits

- 1. The following permits will be required prior to the start of construction:
 - a. Part 91 Soil Erosion and Sedimentation Control St. Clair County Health Department.

- b. Road Right-of-Way Construction- Keewahdin Road St. Clair County Road Commission.
- c. Drainage Permit St. Clair County Drain Commissioner.
- d. Part 399 Watermain State of Michigan Dept. of EGLE, subject to the requirement to provide a water main for the purposes of fire protection (see Item C.2 below).
- 2. Copies of all permits should be provided to our office prior to the start of construction activity.

C. Water Main

- 1. An existing 12-inch water main is located along the south side of Keewahdin Road. This should be added to the plan.
- 2. We recommend that the Township Fire Chief review the plans for the adequacy of fire protection for the site. It is our opinion that this review should include if a watermain should be added to provide fire protection for the units within the site.
- The Township Standard Detail Sheet for Water Main should be included as part of the complete set of engineering plans, subject to the requirement of the fire chief to add a water main for fire protection purposes.

D. Sanitary Sewer

- 1. An existing 12-inch sanitary sewer is located along the north side of Keewahdin Road. This should be added to the plans.
- 2. No extensions of the public sanitary sewer are proposed.
- 3. No sanitary sewer building leads are proposed.

E. Storm Drainage

- 1. The proposed storm drainage system will discharge into the Carrigan and Grace Drain Keewahdin Branch along north side of Keewahdin Road. This will require a permit to be obtained from the St. Clair County Drain Commissioner.
- 2. Storm sewer system drainage calculations have been provided on the plans and indicate that the capacity of the system is adequate to accept the flow generated by the proposed improvements. The hydraulic grade line elevations for each section of the storm sewer should be added in drainage calculation table on Sheet 3 and the hydraulic grade line should be added to the storm sewer profiles on Sheet 4. An initial stating water surface elevation at the detention pond should be provided and substantiated.
- 3. We recommend that CB Structure #9 be revised to 72-inch diameter to allow the storm sewer connections to be constructed with adequate wall space between them.
- 4. A detention pond designed to accommodate the 100-year storm event has been provided and appears adequate for the development. An emergency overflow storm system has been provided which discharges to the Carrigan and Grace Drain Keewahdin Branch. The hydraulic grade line elevations for the storm sewer should be added in drainage calculation table on Sheet 3 and the hydraulic grade line should be added to the storm sewer profiles on Sheet 4. An initial stating water surface elevation at the drain should be provided and substantiated.
- 5. The Permanent Detention Basin Outlet Filter Detail on Sheet 5 indicates eight 1-inch outlet holes are to be provided at elevation 601.00 for the 100-year outlet. These holes are not shown in the detail drawing and should be provided.

Recipient Name Page 3 of 3 March 27, 2025

F. Traffic

- 1. Maneuvering lane dimensions comply with the requirements of the ordinance.
- 2. Adequate circulation is provided on the site.
- 3. We recommend that the Township Fire Chief review the plans for the adequacy of emergency vehicle access throughout the site.

G. Paving and Grading

- 1. Building finish floor elevations show a 1.3-foot grade differential between the north and south ends. Drawing details should be provided on how this is to be achieved. Additional grades should be provided as required to demonstrate intent.
- 2. A 6-foot-high decorative screening wall is proposed around the east, south and west sides of the site. The wall is shown on the neighboring properties on the east and west sides of the site and within the drain easement on the south side of the site. The wall on the east and west sides of the site may have been shown in this manner to prevent drawing linework overlapping. If this is the case, a note should be added to the drawings specifying that the wall be placed on the property line or as otherwise intended. We recommend that the wall on the south side of the site be relocated out of the county drain easement.
- 3. The 6-foot-high decorative screening wall around the property appears to be also functioning as a retaining wall based on the proposed 2 feet of differential between finish site grades and existing grades as provided on Sheet 3 and as shown in the masonry wall detail drawing on Sheet 5. Calculations should be provided demonstrating the ability of the wall to support the loading conditions expected.
- 4. Lineal footage of the 6-foot-high decorative screening wall listed on Sheet 3 of the plans appears incorrect. This should be reviewed and corrected accordingly.

F. Site Lighting

- 1. The plans indicate that shielded wall mounted lighting is to be provided (see Sheet 3). No fixture data has been provided. Details of fixture model type should be added to the drawings.
- 2. We recommend that a site photometric plan be provided to verify with compliance of Section 38-611(5) of the Township Zoning Ordinance.

At this time, we do not recommend the approval of the plans. The plans should be revised including provisions to address the items noted above and resubmitted for further review.

Sincerely,

BMJ ENGINEERS AND SURVEYORS, INC.

Phan A- Part

Philip J. Porte, P.E.

Township Consulting Engineer

Cc: Lori Shink, P.E. – Shink Engineering, PLC
Dione Schlager - Smart Storage Solutions

FORT GRATIOT CHARTER TOWNSHIP SITE PLAN REVIEW

FILE NO: 25-001

COMMENTS DUE: 04/01/2025

Fort Gratiot Departments

Signature of Assessor

TO:

PROJECT	т: S	mart Sto	orage Solutions	MEETING:	04/08/2025
ADDRES	s: K	eewahd	in Road	PARCEL I.D. #:	74-20-016-3015-000
YES	NO	N/A	BU	ILDING DEPARTMENT	
Х			1. Do the preliminary plans indicate the o	correct construction codes?	
	Χ		2. Are there any potential conflicts with t	he site design that are a cau	se for concern?
		Х	3. Are there special conditions, which ma	y necessitate further study	or information?
Comme	nts:				
			Tom Jobbitt	3	3-28-2025
		Signatuı	re of Building Inspector		Date
YES	NO	N/A	ASS	SESSING DEPARTMENT	
	Х		1. Are lot splits required?		
	Х		2. Are lot combinations required?		
	Х		3. Are there any potential conflicts with	the site or use that are a ca	use for concern?
	X		_ 4. Are there special conditions, which m	ay necessitate further study	or information?
Comme	nts:				
			Stanban lanes	2	25 2025
			Stephen Jones	3	-25-2025

Date

FORT GRATIOT CHARTER TOWNSHIP SITE PLAN REVIEW

FILE NO: 25-001

COMMENTS DUE: 04/01/2025

Fort Gratiot Departments

TO:

PROJECT	г: S	mart Sto	rage Solutions	MEETING: 04/08/2025
ADDRES	s: K	(eewahdi	n Road	PARCEL I.D. #: 74-20-016-3015-000
YES	NO	N/A		FIRE DEPARTMENT
	Х		Is there location and adequace	cy of water lines and fire hydrants?
Χ			2. Are additional on-site fire pro	otection systems necessary?
Х			3. Can use or building be service	ed, in case of fire, from all sides?
Х			4. Are the fire lanes provided ac	dequate & accessible without moving cars or equipment?
Х			5. Is there adequate vehicle acc	ess for fire equipment?
Х			6. Can the facility be served in a	reasonable period of time?
<u>X</u>			7. Has current or new address b	een submitted for fire department review?
<u>X</u>			8. Are there special conditions,	which may necessitate further study or information?
			(i.e., paint, solvents, explosive	es, unstable chemicals)
Comme	nts:			
Neeu a	ine nyu	irant on sit	e. Fire flyurants along keewanum	are too far away and on south side of road. WLS
			177 1 6	
			ark Vanderfeyst	4-4-2025 Date
		Sion	a	LIAIE

FORT GRATIOT CHARTER TOWNSHIP SITE PLAN REVIEW

TO: Fort Gratiot Departments FILE NO: 25-001 COMMENTS DUE: 04/01/2025

PROJECT: Smart Storage Solutions MEETING: 04/08/2025

ADDRESS: Keewahdin Road PARCEL I.D. #: 74-20-016-3015-000

YES	NO	N/A	PUBLIC WORKS	
Х			Will the overall system be adequate to absorb proposed use?	
Χ			2. Are there adequate lines at the site?	
Χ			3. Are there necessary rights-of-way for utilities?	
	X		4. Are easements required for water mains, sanitary sewer, or storm drain	age?
Χ			_ 5. Are buildings/parking lots emptying into the municipal storm drain?	
	X		_ 6. Are buildings/parking lots emptying into the streets?	
omme	ents:			
			Greg Randall 3-31-20	25

COVER SHEET
SMART STORAGE SOLUTIONS
3134 KEEWAHDIN ROAD, FORT GRATIOT, MI

SMART STORAGE SOLUTIONS

3134 KEEWAHDIN ROAD FORT GRATIOT, MICHIGAN 48059

- COVER SHEET
- TOPOGRAPHIC SURVEY
- SITE PLAN
- PROFILES & ENTRANCE DETAIL
- SITE DETAILS
- STANDARD STORM SEWER DETAIL SHEET
- SOIL EROSION AND SEDIMENTATION CONTROL PLAN
- SOIL EROSION AND SEDIMENTATION CONTROL DETAIL SHEET
- LANDSCAPING PLAN AND BUILDING INFORMATION

PERMIT STATUS TABLE									
PERMIT	AGENCY	REASON FOR PERMIT	DATE APPLIED FOR	DATE APPROVED					
SOIL EROSION CONTROL PERMIT	SCC HEALTH DEPT.	MORE THAN 1 ACRE TO BE DISTURBED DURING CONSTRUCTION / WITHIN 500' OF A DRAIN	2/28/25	##/##/##					
DRAINAGE PERMIT	SCC DRAIN COMMISSIONER	PROPOSED DISCHARGE OF FLOW TO ESTABLISHED DRAIN	2/28/25	##/##/##					
ROAD COMMISSION PERMIT	SCC ROAD COMMISSION	COMMERCIAL ENTRANCE TO KEEWAHDIN ROAD R.O.W.	2/28/25	##/##/##					
BUILDING PERMIT	FORT GRATIOT TOWNSHIP	SITE CONSTRUCTION	2/28/25	##/##/##					

OWNER: DION SCHLAGER 3001 NORTH RIVER ROAD FORT GRATIOT, MI 48059 CONTACT: DION SCHLAGER EMAIL: dionschlager@gmail.com PHONE: 810-300-1222

TOPOGRAPHY & SITE PLAN BY: SHINK ENGINEERING, PLC 4146 PINE GROVE ROAD FORT GRATIOT, MI 48059 CONTACT: LORI M SHINK EMAIL: Imshink@yahoo.com PHONE: 586-718-1965

DATE:
DESIGNED BY:
DRAWN BY:
CHECKED BY:

SHINK ENGINEERING, PLC 4146 PINE GROVE ROAD FORT GRATIOT, MI 48059 Imshink@yahoo.com 586.718.1965

SHIN 4146 FOR Imsk

WORKING DAYS
SEFORE YOU DIG
CALL MISS DIG
-800-482-7171

PROFILES & ENTRANCE DETAIL SMART STORAGE SOLUTIONS

CALE: 1" = 40'
ROJECT NO.: 2024-0016
ILE NAME: TP-04.DWG

DETENTION CALC		DUACE 1		Г	_	-	
	CULATIONS -	PHASE 1					
ADEA //	1101 E 1 5 = -	ACRE					
AREA (ACRES) 2.22	"C" FACTOR	IMPERVIOUS 2.00	FOOR / PA	VEMENT			
0.00 0.72	0.85 0.17	0.00 0.12	GRAVEL PA	AVING			
0.33	0.95	0.31	POND				
COMPOUND C:		0.74					
TOTAL DRAINAGE	E AREA:	3.27	ACRES				
K1 = AxC (Design	•		2.4339				
Qr = Allowable Rele Qa = Qr * A =	ease Rate = 0.	15 cfs/ac.		0.49	CFS		
100 YR. FLOOD V	OLUME REQUI	RED					
Qo = Qa/A*C=	0.20	CFS/AC-IMP.					
T100 = -25+SQRT((10312.5/Qo) =	201.21					
	16500*T100	- 40*Qa*T100					
VS	T100+25						
=	13054	CF/AC-IMP.					
Vt=	Vs*A*C =	31773	CF				
REQUIRED 100 YE	EAR DETENTI	ON VOLUME =	31773	CF			
BANKFULL FLOO	D VOLUME						
The Bankfull Volum V _{BF} = 8349 * A * C=		2 yr. Storm Ever 20321					
		20321					
FIRST FLUSH VOI The First Flush Voli		" of rain over and	re watersha				
V _{FF} = 3630 x A x C		8835		4.			
STORAGE PROVI	DED						
ELEV.	AREA	DEPTH	VOLUME	TOTAL			
602	(FT ²) 14897	(FT) 1	(FT ³) 13,580	VOLUME (FT3) 45,356	FREEBOARD) El E\/∆∏⊙N	V
601	12304	1	11,099	31,776			•
600 599	9937 7797	1	8,845 6,817	11,831			
598 597	5882 4194	1 0	5,014 0	5,014 0			
FIRST FUUSH							
X _{FF} =	598.49						
BUNKFULL FLOOD)						
X _{BF} =	599.96						
100 YEAR							
X ₁₀₀ =	601.00						
TOP OF BERM	602.00						
OUTLET CONTRO	SIRUCIUE	<u>\</u>					
<u>FIRST FLUSH OF I</u> THE AVERAGE AL		LEASE RATE FO	R RUNOFF	L IS 1" OVER AREA	OF SHEIN 2	4 HRS.	
THE AVERAGE AL	LOWABLE RE		DR RUNOFF			4 HRS.	
THE AVERAGE AL $Q_{FF} = V_{FF} \times (1/24HF)$	LOWABLE RE RS) x (1HR/360	00SEC)=		1S 1" OVER AREA 0.102			
THE AVERAGE AL	LOWABLE RE RS) x (1HR/360	00SEC)=				4 HRS. 597.00	
THE AVERAGE AL $Q_{FF} = V_{FF} \times (1/24HF)$	LOWABLE RE RS) x (1HR/360 IN STANDPIR	00SEC)= PE AT BOTTOM C			CFS		
THE AVERAGE AL QFF = VFF x (1/24HF PLACE OPENINGS	LOWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASII	00SEC)= PE AT BOTTOM C N ELEV x 2/3 =		0.102	CFS FT		
THE AVERAGE AL $Q_{FF} = V_{FF} \times (1/24HF)$ PLACE OPENINGS $HEAD = h = Xff - E$	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5})	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 =	DF BASIN =	0.102	CFS FT		
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2)	LOWABLE RE RS) x (1HR/360 B IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5})	DOSEC)= PE AT BOTTOM C N ELEV x 2/3 = = INCH DIAMETER	OF BASIN =	0.102 1.00 0.021	CFS FT FT ²	597.00	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2)) A	COWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1	DOSEC)= PE AT BOTTOM C N ELEV x 2/3 = INCH DIAMETER	OF BASIN = R ORIFICE H 3.78	0.102 1.00 0.021 HAS AN AREA OF	FT FT ² 0.0055	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A THEREFORE, USI	LOWABLE RE RS) x (1HR/360 B IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 1 0.0055 E THE FOLLO HOLES,	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = = INCH DIAMETER = WING NUMBER AT ELEV.	OF BASIN = R ORIFICE H 3.78	0.102 1.00 0.021	CFS FT FT ²	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A THEREFORE, USI 4.00	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 0.0055	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = = INCH DIAMETER = WING NUMBER AT ELEV.	DF BASIN = R ORIFICE H 3.78	0.102 1.00 0.021 HAS AN AREA OF	FT FT ² 0.0055	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD	LOWABLE RE RS) x (1HR/360 BIN STANDPIF BOTTOM BASIF 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS	OF BASIN = R ORIFICE H 3.78 OF 597.00	0.102 1.00 0.021 HAS AN AREA OF	FT FT ² 0.0055	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 D ABLE RELEAS	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40	OF BASIN = R ORIFICE H 3.78 OF 597.00	1.00 0.021 HAS AN AREA OF 1	FT FT ² 0.0055	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII	LOWABLE RE RS) x (1HR/360 B IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 ABLE RELEAS FICE TO SEE	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL F	OF BASIN = R ORIFICE H 3.78 OF 597.00	1.00 0.021 HAS AN AREA OF 1	FT FT ² 0.0055 INCH DIAME	597.00 SF	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 X (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - E	LOWABLE RE RS) x (1HR/360 BIN STANDPIF BOTTOM BASIF 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B	PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL HASIN * 2/3 =	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY.	FT FT ² 0.0055 INCH DIAME	SF TER HOLES GH THE	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY.	FT FT ² 0.0055 INCH DIAME	SF TER HOLES GH THE 0.152 HRS	
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOF FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90.0)	LOWABLE RE RS) x (1HR/360 BIN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 BOTTOM OF B BOTTOM OF B ES x (AREA E	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL F ASIN * 2/3 = ACH HOLEFF) x (24-40) HR / 3600SEC) =	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97	FT O.0055 INCH DIAME ARGE THROU	SF TER HOLES GH THE 0.152 HRS	CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOF FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90.0)	LOWABLE RE RS) x (1HR/360 BIN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 BOTTOM OF B BOTTOM OF B ES x (AREA E	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL F ASIN * 2/3 = ACH HOLEFF) x (24-40) HR / 3600SEC) =	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY.	FT O.0055 INCH DIAME ARGE THROU	SF TER HOLES GH THE 0.152 HRS	CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOF FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90.0)	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 D ABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL F ASIN * 2/3 = ACH HOLEFF) x (24-40) HR / 3600SEC) =	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97	FT O.0055 INCH DIAME ARGE THROU	SF TER HOLES GH THE 0.152 HRS	CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - E Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90 SINCE HOLDING T 100 YEAR FLOOD	COWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL HASIN * 2/3 = ACH HOLEFF) x (24-40) THAN 40 HRS, AI	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN	FT O.0055 INCH DIAME ARGE THROU	SF TER HOLES GH THE 0.152 HRS	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE	LOWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASII 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 D ABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS	PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE DDITIONAL	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN	FT O.0055 INCH DIAME ARGE THROU FT 37.02	SF TER HOLES GH THE 0.152 HRS NOT REQUIF	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR	COWABLE RE RS) x (1HR/360 S IN STANDPIR BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS MAXIMUM FLO	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORI HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK	LOWABLE RE RS) x (1HR/360 BIN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 ETHE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS MAXIMUM FLO FULL ORIFICE	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE T	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9) SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE	LOWABLE RE RS) x (1HR/360 S IN STANDPIE SOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 ETHE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS RELEASE RA MAXIMUM FLO FULL ORIFICE TO RELEASE	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE T	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORI HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL+QBFACT	COWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASIF 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS MAXIMUM FLO (FULL ORIFICE TO RELEASE TO RELEASE UAL =	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE TE THE 100 YEAR	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL + QBFACT Qa - (QFF + QBF) =	LOWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 BOTTOM OF B BOTTOM OF B BOTTOM OF B RELEASE RA MAXIMUM FLO FULL ORIFICE TO RELEASE TO RELEASE TO RELEASE TO RELEASE UAL =	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL R ASIN * 2/3 = ACH HOLEFF) x (2/2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT LUME:	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE NG THROUGH FROM Qa TO	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORI HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL+QBFACT	LOWABLE RE RS) x (1HR/360 S IN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 BOTTOM OF B BOTTOM OF B BOTTOM OF B RELEASE RA MAXIMUM FLO FULL ORIFICE TO RELEASE TO RELEASE TO RELEASE TO RELEASE UAL =	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL R ASIN * 2/3 = ACH HOLEFF) x (2/2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE NG THROUGH FROM Qa TO	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL + QBFACT Qa - (QFF + QBF) =	LOWABLE RE RS) x (1HR/360 SIN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 ETHE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H IME IS LESS RELEASE RA MAXIMUM FLO (FULL ORIFICE TO RELEASE TO RELEASE UAL = *32.2 * (X100-	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER = WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE TE THE 100 YEAR 0.217 0.273 XFF)) 0.5) =	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT LUME:	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE NG THROUGH FROM Qa TO	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q90 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL+QBFACT Qa - (QFF + QBF) = A= Qa / (0.62 * (2 A	LOWABLE RE RS) x (1HR/360 SIN STANDPIF BOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 ETHE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H IME IS LESS RELEASE RA MAXIMUM FLO (FULL ORIFICE TO RELEASE TO RELEASE UAL = *32.2 * (X100-	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER = WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE TE THE 100 YEAR 0.217 0.273 XFF)) 0.5) =	DF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCHANECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSID, AND SUBTRACT LUME: 0.035	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE NG THROUGH FROM Qa TO SF	SF TER HOLES GH THE 0.152 HRS NOT REQUIF 0.49 I FIRST DETERMINE	CFS RED.
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL + QBFACT Qa - (QFF + QBF) = A= Qa / (0.62 * (2 A THEREFORE, USI	LOWABLE RE RS) x (1HR/360 S IN STANDPIE SOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 CHARLES BOTTOM OF B BOTTOM OF B BOTTOM OF B BOTTOM OF B CHARLES BOTTOM OF B CH	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL HEADITIONAL	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE 2 x 32.2 x h) THE IN ACRE THE MAXIN OTAL HEAD STORM VOI CFS CFS R ORIFICE H 6.36 OF	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCHANECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSID, AND SUBTRACT LUME: 0.035	FT O.0055 INCH DIAME ARGE THROU FT 37.02 NDPIPE ARE NG THROUGH FROM Qa TO SF	SF TER HOLES O.152 HRS NOT REQUIF 0.49 I FIRST DETERMINE	CFS CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL + QBFACT Qa - (QFF + QBF) = A= Qa / (0.62 * (2 A THEREFORE, USI	COWABLE RE RS) x (1HR/360 S IN STANDPIF SOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS MAXIMUM FLO FULL ORIFICE TO RELEASE UAL = *32.2 * (X100- 1 0.005	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL HEADITIONAL	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE DDITIONAL THE IN ACRE THE MAXIN TOTAL HEAD STORM VOI CFS CFS R ORIFICE H 6.36	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT LUME: 0.035	FT O.0055 INCH DIAME ARGE THROUGH TROM Qa TO SF 0.005	SF TER HOLES O.152 HRS NOT REQUIF 0.49 I FIRST DETERMINE	CFS CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL+QBFACT Qa - (QFF + QBF) = A= Qa / (0.62 * (2 A A/ THEREFORE, USI 6	COWABLE RE RS) x (1HR/360 S IN STANDPIE SOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS WAXIMUM FLO FULL ORIFICE TO RELEASE TO RELEASE VAL = *32.2 * (X100- 1 0.005 E THE FOLLO HOLES AT E	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL H ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE ES, USING THE TES,	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, CHOLES ARE DDITIONAL ITE IN ACRE THE MAXIN OTAL HEAD STORM VOI CFS CFS R ORIFICE H 6.36 OF 599.96	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT LUME: 0.035	FT O.0055 INCH DIAME ARGE THROUGH TROM Qa TO SF 0.005	SF TER HOLES O.152 HRS NOT REQUIF 0.49 I FIRST DETERMINE	CFS CFS
THE AVERAGE AL QFF = VFF X (1/24HF PLACE OPENINGS HEAD = h = Xff - E A = QFF / (0.62 x (2 A A/ THEREFORE, USI 4.00 QFFACTUAL = BANKFULL FLOOD FOR THE ALLOWA FIRST FLUSH ORII HEAD = h = Xbf - I Q90.0 = 0.62x #HOL T90.0 = (1SEC / Q9 SINCE HOLDING T 100 YEAR FLOOD Qa = ALLOWABLE Qa IS A PEAK OR FLUSH AND BANK THE ORIFICE SIZE QFFACTUAL+QBFACT Qa - (QFF + QBF) = A= Qa / (0.62 * (2 A A/ THEREFORE, USI 6	COWABLE RE RS) x (1HR/360 S IN STANDPIE SOTTOM BASH 2 x 32.2 x h) ^{0.5}) 1 0.0055 E THE FOLLO HOLES, 0.108 DABLE RELEAS FICE TO SEE BOTTOM OF B ES x (AREA E 0.0) x VBF x (1H TIME IS LESS WAXIMUM FLO FULL ORIFICE TO RELEASE TO RELEASE VAL = *32.2 * (X100- 1 0.005 E THE FOLLO HOLES AT E	DOSEC)= PE AT BOTTOM CON ELEV x 2/3 = INCH DIAMETER WING NUMBER AT ELEV. CFS E RATE OF 24-40 IF ADDITIONAL F ASIN * 2/3 = ACH HOLEFF) x (2 HR / 3600SEC) = THAN 40 HRS, AI TE x AREA OF S DW. CALCULATE S, USING THE T THE 100 YEAR 0.217 0.273 XFF)) 0.5 = INCH DIAMETER = WING NUMBER LEV. =	OF BASIN = R ORIFICE H 3.78 OF 597.00 D HOURS, C HOLES ARE 2 x 32.2 x h) THE MAXIN OTAL HEAD STORM VOI CFS CFS R ORIFICE H 6.36 OF 599.96	1.00 0.021 HAS AN AREA OF 1 HECK THE DISCH NECESSARY. 1.97 0.5 = ORIFICES IN STAN ES= MUM FLOW PASSI D, AND SUBTRACT LUME: 0.035	FT O.0055 INCH DIAME ARGE THROUGH TROM Qa TO SF 0.005	SF TER HOLES O.152 HRS NOT REQUIF 0.49 I FIRST DETERMINE	CFS CFS

K ENGINEERING PINE GROVE GRATIOT, MI ink@ydhoo.com 718.1965

I₩⁵

SITE DETAILS & CALCULATIONS SMART STORAGE SOLUTIONS KEEWAHDIN ROAD, FORT GRATIOT, MI

5

VERTICAL ADJUSTMENT OF EXISTING WATER MAIN

18 CU. FT. FOR 6" MAIN

32 CU. FT. FOR 8" MAIN

REVISIONS:

68 CU. FT. FOR 12" MAIN

12" MIN.

STANDARD BEDDING

-FRAME AND COVER

MIN. 6" - MAX. 18" ADJUSTMENT

-BRICK, CONCRETE BLOCK,

/-N° 4 BARS AT 12" EASH

→ PRECAST OR POURED CONCRETE

BASE - 2500 P.S.I. AT 28

DAYS (IF PRECAST IS USED

PLACE 2" MINIMUM SAND

SUB-BASE)

. INLET SHALL NOT BE USED FOR YARD DRAINAGE.

3. OTHER THAN ABOVE, INLET MAY BE USED, PROVIDED:

B. NOT MORE THAN ONE INLET DISCHARGES INTO A

2. INLET SHALL NOT BE USED IN COUNTY ROAD RIGHT-OF-WAY.

A. THE INLET DISCHARGES INTO A CATCH BASIN LOCATED

INLET

(SEE NOTES)

OR PRECAST

BEDDING DETAIL

3/8" PEA GRAVEL OR

WITH 1/2" MAX. SIZE

■ UNDISTURBED

EARTH

SPECIAL BACKFILL

∠R.C.C.P. CLASS AS INDICATED ON

- FRAME AND COVER

(SEE NOTES)

GENERAL STORM SEWER NOTES

- 1. AT LEAST FORTY-EIGHT (48) HOURS PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL GIVE NOTIFICATION OF HIS INTENTION TO BEGIN CONSTRUCTION TO THE MUNICIPAL SEWER DEPARTMENT, THE COUNTY DRAIN COMMISSIONER'S OFFICE AND THE COUNTY ROAD COMMISSION.
- 2. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL ATTEND A PRE-CONSTRUCTION MEETING, AT A TIME AND PLACE AS ARRANGED BY THE OWNER OR THE MUNICIPAL ENGINEER, AT WHICH VARIOUS UTILITY COMPANIES AND GOVERNMENTAL AGENCY REPRESENTATIVES WILL BE PRESENT.
- 3. PRIOR TO CONSTRUCTION, THE CONTRACTOR MUST HAVE IN HIS POSSESSION A COPY OF A VALID PERMIT TO CONSTRUCT A CONNECTION TO, OR AN EXTENSION OF, THE STORM WATER DRAINAGE SYSTEM.
- 4. THE CONTRACTOR SHALL SECURE PERMITS FROM THE COUNTY DRAIN COMMISSIONER FOR ALL TAPS AND CROSSINGS OF COUNTY DRAINS AND SHALL PAY THE COSTS OF SAID PERMITS AND THE COST OF ANY INSPECTION CHARGES BY THAT AGENCY FOR WORK DONE UNDER THE PERMITS.
- 5. SEVENTY TWO (72) HOURS PRIOR TO ANY CONSTRUCTION, THE CONTRACTOR SHALL NOTIFY MISS DIG 800-482-7171 FOR THE LOCATION OF UNDERGROUND FACILITIES, AND ALSO NOTIFY REPRE-SENTATIVES OF ANY OTHER FACILITIES, LOCATED IN THE VICINITY OF THE WORK WHICH MAY NOT BE HANDLED BY MISS DIG
- 6. ALL STORM WATER DRAINAGE SYSTEM CONSTRUCTION SHALL CONFORM TO THE CURRENT STANDARDS AND SPECIFICATIONS OF THE MUNICIPALITY, COUNTY ROAD COMMISSION AND/OR COUNTY DRAIN COMMISSION, AS APPLICABLE.
- 7. ALL REINFORCED CONCRETE SEWER SHALL CONFORM TO ASTM SPECIFICATION C76 WITH CLASS DESIGNATION ON PLANS.
- 8. UNLESS OTHERWISE INDICATED ON THE PLANS, ALL STORM SEWER JOINTS SHALL BE TONGUE AND GROOVE WITH BITUMINOUS COMPOUND JOINT FILLER MATERIAL.
- 9. UNLESS OTHERWISE INDICATED ON THE PLANS, ALL STORM SEWER BEDDING SHALL BE STANDARD BEDDING.
- 10. ALL WYES AND BUILDING SERVICE CONNECTIONS SHALL BE 3" POLY VINYL CHLORIDE (PVC) SEWER PIPE D3033 OR D3034-3.
- 11. ALL STORM SEWER WYE OPENINGS SHALL BE FACTORY INSTALLED EXCEPT WHEN USING ABS TRUSS PIPE FOR SUMP PUMP DISCHARGE OUTLET.
- 12. UNLESS OTHERWISE NOTED ON THE PLANS, STRUCTURE FRAME AND COVERS SHALL BE AS FOLLOWS: MANHOLE IN ROAD RIGHT OF WAY WITHIN 10 FT. OF ROW LINE
 - E.J.I.W. 1040 WITH TYPE A, SOLID COVER MANHOLE IN ROAD RIGHT OF WAY OUTSIDE OF SIDEWALK AREA AND MANHOLE NOT IN ROAD RIGHT OF WAY
 - E.J.I.W. 1040 WITH TYPE B, PERFORATED COVER CATCH BASIN OR INLET WITHIN PAVEMENT E.J.I.W. 5105 WITH SINUSOIDAL GRATE
 - CATCH BASIN, YARD TYPE OR SIDE INLET E.J.I.W. 1040 WITH TYPE N GRATE
 - E.J.I.W. 1040 OR NEENAH R-1642 WITH OVAL GRATE HAVING A RISE ABOVE THE FRAME OF 2 1/2" CATCH BASIN (FIELD TYPE) E.J.I.W. 6508

STORM SEWER DETAILS

SH. <u>6</u> OF <u>9</u>

Charter Township of Fort Gratiot

PORT HURON, MICHIGAN 48060 PHONE: (313) 385-4489 & DPW 385-3170

3720 KEEWAHDIN ROAD

SPECIAL INLET NOTES:

WITHIN 75 FEET.

CATCH BASIN.

Shink Engineering, PLC

48059

SOIL EROSION & SEDIMENTATION CONTROL SMART STORAGE SOLUTIONS 3134 KEEWAHDIN ROAD, FORT GRATIOT, MI

3134

MICHIGAN UNIFIED KEYING SYSTEM SOIL FROSION SEDIMENTATION CONTROL MEASURES

SOIL EROSION & SEDIMENTATION CONTROL

- CONSTRUCTION OPERATION SHALL BE SCHEDULED AND PERFORMED SO THAT
 PREVENTATIVE EROSION CONTROL MEASURES ARE IN PLACE PRIOR TO EXCAVATION AND
 TEMPORARY STABILIZATION MEASURES ARE IN PLACE IMMEDIATELY FOLLOWING
 BACKFILLING AND/OR GRADING OPERATIONS.
- BORROW AND FILL DISPOSAL AREAS WILL BE SELECTED AND APPROVED AT TIME OF PLAN REVIEW.
- 3. SPECIAL PRECAUTIONS WILL BE TAKEN IN THE USE OF CONSTRUCTION EQUIPMENT TO
- PREVENT SITUATIONS THAT PROMOTE EROSION.

 4. CLEANUP WILL BE DONE IN A MANNER TO INSURE THAT EROSION CONTROL MEASURES ARE NOT DISTURBED.
- 5. THE PROJECT WILL CONTINUALLY BE INSPECTED FOR SOIL EROSION AND SEDIMENT CONTROL COMPLIANCE. DEFICIENCIES WILL BE CORRECTED BY THE CONTRACTOR WITHIN
- 6. TEMPORARY EROSION CONTROL MEASURES SHALL BE COMPLETELY REMOVED BY THE CONTRACTOR UPON ESTABLISHMENT OF PERMANENT CONTROL MEASURES.

OPERATION TIMI	E SCHE	EDU	LE									
CONSTRUCTION SEQUENCE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
STRIP & STOCKPILE TOPSOIL												
ROUGH GRADE SEDIMENT CONTROL												
TEMP. CONTROL MEASURES												
STORM FACILITIES												
TEMP. CONSTRUCTION ROADS												
SITE CONSTRUCTION												
PERM. CONTROL MEASURES												
FINISH GRADING												

CLEARING

PERMANENT SEEDING GUIDE		
	APR MAY JUN JUL AUG SEP OCT	
IRRIGATED AND/OR MULCH WITHOUT IRRIGATION OR MULCH	ZON	E 1
IRRIGATED AND/OR MULCHED WITHOUT IRRIGATION OR MULCH	ZON	E 2
IRRIGATED AND/OR MULCHED WITHOUT IRRIGATION OR MULCH	ZON	E 3

SHINK ENGINEERING, PLC
YOU DIG
ISS DIG
HAS PINE GROVE ROAD
FORT GRATIOT, MI 48059
Imshink@yahoo.com
CHAS—7171
ILMS
586.718.1965

Ω 3 4 Σ Ω L

ROSION & SEDIMENTATION CONTROL D KEEWAHDIN MINI STORAGE FORT GRATIOT, MI 48059

SOIL EROSION & SEDIME
KEEWAHDIN

LE: AS SHOWN
JECT NO.: 2024-0011
NAME: TP-04.DWG
ET: 8 OF 9

K <u>□</u>

Copyright®

In addition to any interior parking lot landscaping and/or screening/buffer between land uses required by this chapter, not less than ten percent of the site area, excluding existing thoroughfare rights—of—way, shall be landscaped. Areas used for storm drainage purposes, such as unfenced drainage courses or retention areas in front or side yards, may be included as a portion of the required landscaped area not to exceed five percent of the site area.

(1)All portions of the landscaped area shall be planted with grass, ground cover, shrubbery or other suitable plant material, except that paved patios, terraces, sidewalks and similar site features may be incorporated with planning commission approval.

(2)A mixture of evergreen and deciduous trees shall be planted at the rate of one tree for each 3,000 square feet or portion, thereof, of required landscaped open space area.

PERIMETER PARKING LOT LANDSCAPING.

The purpose of perimeter landscaping requirements is to define parking areas, shield views of parked AND TEN SHRUBS FOR EACH 35 FEET OF FRONTAGE. cars to passing motorists and pedestrians and prevent two adjacent lots from becoming one large expanse of paving. The provision of the perimeter landscaping, between adjacent parking lots, shall not preclude the need to provide vehicular access between lots. Landscape strips shall be provided around the perimeter of lots, as follows:

(1)Perimeter landscape strips separating parking lots and driving lanes from abutting rights—of—way. a. General requirements. Whenever an off—street parking lot or driving lane abuts a right—of—way, public or private, a perimeter landscape strip shall be created which meets the minimum standards established in this subsection. The perimeter boundary, between the edge of the planned right—of—way and the parking lot or driving lane. Accessways, from public rights—of—way through required landscaped strips, shall be permitted; but such accessways shall not be subtracted from the lineal dimension used to determine the minimum number of trees required, unless such calculation would result in a violation of the spacing requirements set forth in this section. b. Landscaping; plantings. The strip shall be landscaped and planted in one of the following approved methods:

1. A 15-foot wide strip planted with one deciduous tree and ten shrubs for each 35 feet of frontage.

(2) Other perimeter landscaping strips. In addition to the perimeter landscaping required in subsection (h)(1) of this section, perimeter landscaping strips shall be required along the remaining boundaries of a parking lot or driving lane, as follows:

a. A landscaped strip, at least eight feet wide, planted with one deciduous tree and three shrubs for each 35 feet of perimeter. For small, shallow, narrow or unusually shaped lots, the planning commission may reduce the required width, modify the plantings required or waive this requirement, upon demonstration that compliance with this subsection would cause undue hardship. b. If existing woodlands are available, the applicant may preserve a 25-foot wide strip in lieu of the landscaping requirement.

 $7.60 \text{ AC} \times 10\% = 0.76 \text{ AC} \times 43,560 \text{ SF/AC} = 33,106 \text{ SF}$ TOTAL REQUIRED GENERAL LANDSCAPE AREA 33,106 SF

AREA ALLOWED IN DRAINAGE AREAS 16,553 SF = 0.38 AC

1.04 ACRES PROVIDED

REMAINING REQUIRED GENERAL LANDSCAPE AREA IS PROVIDED AND EXCEEDED IN THE PERIMETER PERIMETER LANDSCAPE STRIPS

PERIMETER PARKING LOT LANDSCAPING.

PERIMETER LANDSCAPE STRIPS SEPARATING PARKING LOTS AND DRIVING LANES FROM ABUTTING RIGHTS-OF-WAY. A 15-FOOT WIDE STRIP PLANTED WITH ONE DECIDUOUS TREE 220 FT / 35 = 6.28 = 7 DECIDUOUS TREES

(OAK OR HARD MAPLES ARE RECOMMENDED, LARGE DECIDUOUS TREES)

220 FT / 35 = 6.28 x 10 = 62.8 = 63 SHRUBS

(REGAL PRIVET, COMPACT BURNING BUSH, & EUONYMOUS VARIETIES RECOMMENDED)

OTHER PERIMETER LANDSCAPING STRIPS.

A LANDSCAPED STRIP, AT LEAST EIGHT FEET WIDE, PLANTED WITH ONE DECIDUOUS TREE AND THREE SHRUBS FOR EACH 35 FEET OF PERIMETER.

2,375 LF / 35 = 67.8 = 68 DECIDUOUS TREES

(HORNBEAM OR SERVICEBERRY ARE RECOMMENDED, SMALL DECIDUOUS TREES)

 $2,375 \text{ LF } / 35 = 67.8 \times 3 = 203.4 = 204 \text{ SHRUBS}$ (REGAL PRIVET, COMPACT BURNING BUSH, & EUONYMOUS VARIETIES RECOMMENDED)

EXISTING VEGETATION PHASE 1 IS MODERATELY WOODED, PHASE 2 IS DENSELY WOODED. PHASE 2 EXISTING VEGETATION IS TO REMAIN AFTER PHASE 1 CONSTRUCTION. THIS IS GREATLY IN EXCESS OF A 25 FOOT WIDE PRESERVATION STRIP.